Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets.
نویسندگان
چکیده
The roles of proteinase-activated receptors (PARs) in platelet functions other than aggregation are not well understood. Among these is the release of factors that regulate the process of angiogenesis, such as endostatin and VEGF, which, respectively, inhibit and promote angiogenesis. PAR1 and PAR4 are expressed on the surface of human platelets and can be activated by thrombin. In the present study, we have attempted to determine the roles of PAR1 and PAR4 in regulating release of endostatin and VEGF from human platelets. Aggregation and endostatin release could be elicited by a specific PAR4 agonist (AYPGKF-NH(2)). The PAR4 agonist concentration dependently suppressed VEGF release. A selective PAR1 agonist (TFLLR-NH(2)) induced platelet aggregation and VEGF release but suppressed endostatin release. Thrombin did not affect endostatin or VEGF release. However, in the presence of a selective PAR1 antagonist (SCH79797), thrombin stimulated endostatin release and suppressed VEGF release. Conversely, in the presence of a selective PAR4 antagonist (transcinnamoyl-YPGKF-NH(2)), thrombin stimulated VEGF release. In vivo, treatment of rats with established gastric ulcers with a PAR1 antagonist each day for 1 wk resulted in a significant retardation of healing. We conclude that PAR1 and PAR4 counter-regulate the release of endostatin and VEGF from platelets. These protease-activated receptors could therefore play a crucial role in regulating angiogenesis and in turn could regulate the processes of wound healing and tumor growth.
منابع مشابه
Quantitative proteomics analysis reveals similar release profiles following specific PAR-1 or PAR-4 stimulation of platelets.
AIMS Platelets are a natural source of growth factors, cytokines and chemokines, that regulate angiogenesis and inflammation. It has been suggested that differential release of pro- and anti-angiogenic growth factors from platelet α-granules by protease-activated receptors (PAR) 1 and 4 may be important for the regulation of angiogenesis. We aimed to compare the releasates of unstimulated plate...
متن کاملAngiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released.
Platelets, in addition to their function in hemostasis, play an important role in wound healing and tumor growth. Because platelets contain angiogenesis stimulators and inhibitors, the mechanisms by which platelets regulate angiogenesis remain unclear. As platelets adhere to activated endothelium, their action can enhance or inhibit local angiogenesis. We therefore suspected a higher organizati...
متن کاملPLATELETS AND THROMBOPOIESIS Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis
An association between platelets, angiogenesis, and cancer has long been recognized, but the mechanisms linking them remains unclear. Platelets regulate new blood vessel growth through numerous stimulators and inhibitors of angiogenesis by several pathways, including differential exocytosis of angiogenesis regulators. Herein, we investigated the differential release of angiogenesis stimulators ...
متن کاملControl of Angiogenesis by Galectins Involves the Release of Platelet-Derived Proangiogenic Factors
Platelets contribute to vessel formation through the release of angiogenesis-modulating factors stored in their α-granules. Galectins, a family of lectins that bind β-galactoside residues, are up-regulated in inflammatory and cancerous tissues, trigger platelet activation and mediate vascularization processes. Here we aimed to elucidate whether the release of platelet-derived proangiogenic mole...
متن کاملRelease of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis.
An association between platelets, angiogenesis, and cancer has long been recognized, but the mechanisms linking them remains unclear. Platelets regulate new blood vessel growth through numerous stimulators and inhibitors of angiogenesis by several pathways, including differential exocytosis of angiogenesis regulators. Herein, we investigated the differential release of angiogenesis stimulators ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 1 شماره
صفحات -
تاریخ انتشار 2005